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• Oligarchic growth (Kokubo & Ida 1998, Thommes et al. 2003)

• Slower growth of oligarchs by accretion of smaller embryos. 

• This phase ends when the mass in small planetesimals has become too small to 
damp the eccentricities of large embryos. This occurs for masses between moon 
mass at 1 au and up to 10 MEarth at 10 au, on timescales of ~105 yrs to several 106 
yrs.
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• Giant planets take too much time to form
• In realistic simulations, giant planets cores clear gaps which prevent 

growth to critical mass before the disk dissipates on ~Ma timescales 
(Levison, Thommes & Duncan 2010)

• Grains & planets migrate
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Evolving disks

• Disks are not static

• Collapse of molecular cloud 
core ~105 yrs

• Evolution of the disks ~a few 
106 yrs.

• Giant planet formation requires:

• The formation of solid 
planetesimals and cores

• Accretion of the disk gas

• Once formed, planets migrate

Dobbs-Dixon et al. (2006)

Hueso & Guillot (2005)
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Solids in peril

• Disks are extended and dusty

• The outer regions are a 
reservoir of solids

• Grains grow & drift rapidly

• E.g., Dullemond & Dominik 
(2005), Garaud (2007)

• Growth to planetesimal size is 
prevented by bouncing

• E.g., Zsom et al. (2011), 
Okuzumi et al. (2012)

Evolution of the composition of 
accreted material (using Garaud 2007) 
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Forming planetesimals: streaming instabilities

• Planetesimals may be formed 
rapidly (~orbital periods) by 
streaming instabilities 
(Youdin & Goodman 2005, 
Johansen et al. 2007)

• These instabilities may lead 
to the direct formation of 
Ceres-mass objects 
(Johansen et al. 2011)

• However, this requires high 
enrichments, difficult to 
reach for pebbles (see 
Carrera et al. 2015; Krijt et 
al. 2016)

Johansen et al. (2011)



Ida & Guillot, A&A  596, L3 (2016)
Formation of dust-rich planetesimals 

from sublimated pebbles inside of the snow line
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A slow vertical mixing:
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Estimating ξ

The pebble formation front is defined 
either by the growth timescale of pebbles

Or by the location at which the disk is 
gravitationally unstable in the gas

Formation of dust-rich planetesimals 
directly by gravitational instability
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• Planetesimal formation by streaming instability is difficult

• dust-to-gas ratio is low due to the fast migration of pebbles 

• Streaming instability may be possible at high turbulence levels (e.g., α>0.01)

• one possibility would be to include pressure bumps  

• Including the back reaction of the solids on the gas yields an instability for small particles and high 
pebble fluxes

• the instability can occur when the pebble to gas mass flux ratio exceeds 0.1(α/10-4)1/2

• This instability is favored at low turbulence levels

• The snow line (or any condensation line) is a special location to help planetesimal formation

• Ice sublimation transforms pebbles into small (dust-rich) grains

• When the dust to gas ratio exceeds unity, planetesimals form by direct gravitational instability

• These planetesimals are dust-rich

• How do solar abundances relate to the ice-to-rock ratio in the solar system? 

• What about that Ice-to-rock ratio in exoplanets?


