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® Settling to the mid-plane + gravitational instabilities lead to a formation of
planetesimals in 10% to 10° yrs.

® Runaway growth: (Greenberg et al. 1978;Wetherill & Steward 1989; Ida & Makino
1992)

® Gravitational focusing means that large embryos grow at the expense of small ones

® This phase ends when relative velocities become too large, i.e., for masses around a
Ceres mass, and in ~10° yrs

® Oligarchic growth (Kokubo & Ida 1998, Thommes et al. 2003)
® Slower growth of oligarchs by accretion of smaller embryos.

® This phase ends when the mass in small planetesimals has become too small to
damp the eccentricities of large embryos. This occurs for masses between moon
mass at | au and up to 10 Mgareh at 10 au, on timescales of ~10° yrs to several 10°

yrs.
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Beyond the standard picture

® Planetesimals do not form easily

® Solids cannot form a small-enough mid-plane for gravitational

instabilities in the dust to form planetesimals directly (Dubrulle et al.
1995)

® Grain growth is suppressed at the bouncing barrier to sizes ~10cm
(Zsom et al. 201 1)

® Giant planets take too much time to form

® |n realistic simulations, giant planets cores clear gaps which prevent

growth to critical mass before the disk dissipates on ~Ma timescales
(Levison, Thommes & Duncan 2010)

® Grains & planets migrate
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® The formation of solid
planetesimals and cores

® Accretion of the disk gas
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Evolving disks

® Disks are not static

® Collapse of molecular cloud
core ~10° yrs

® Evolution of the disks ~a few
10° yrs.

® Giant planet formation requires:

® The formation of solid
planetesimals and cores

® Accretion of the disk gas

® Once formed, planets migrate
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® Grains grow & drift rapidly

® E.g., Dullemond & Dominik
(2005), Garaud (2007)

® Growth to planetesimal size is
prevented by bouncing

® Eg,Zsometal (2011),
Okuzumi et al. (2012)

Eaccretion

0:

L

fiducial: alpha=0.01, $,,0=1 micron, My,=0.05 Ms,,,, Z=1/100 -

alpha=10", s,,,,,:=300 microns -
Mdlsk0=0'2 MSLI\ —:

0.0

0.10

1.00
Age [Ma]

10.00

R

100.00



Forming planetesimals: streaming instabilities




Forming planetesimals: streaming instabilities

® Planetesimals may be formed
rapidly (~orbital periods) by
streaming instabilities
(Youdin & Goodman 2005,
Johansen et al. 2007)




Forming planetesimals: streaming instabilities

® Planetesimals may be formed
rapidly (~orbital periods) by
streaming instabilities
(Youdin & Goodman 2005,
Johansen et al. 2007)

® These instabilities may lead
to the direct formation of
Ceres-mass objects
(Johansen et al. 201 1)




Forming planetesimals: streaming instabilities

® Planetesimals may be formed
rapidly (~orbital periods) by
streaming instabilities
(Youdin & Goodman 2005,
Johansen et al. 2007)

® These instabilities may lead
to the direct formation of
Ceres-mass objects
(Johansen et al. 201 1)




Forming planetesimals: streaming instabilities

® Planetesimals may be formed
rapidly (~orbital periods) by
streaming instabilities
(Youdin & Goodman 2005,
Johansen et al. 2007)

® These instabilities may lead
to the direct formation of

Ceres-mass objects
(Johansen et al. 201 1)

® However, this requires high
enrichments, difficult to
reach for pebbles (see
Carrera et al. 2015; Krijt et
al. 2016)
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Forming the first planetesimals from pebbles

X, = Mpeb/27rvy,
g = M. /3nv =~ M. [3nahiQx,

The inward radial drift speed of solids was calculated in the
limit of a static disk by Nakagawa et al. (1986) and in the limit
of a low solid-to-gas ratio by Guillot et al. (2014). Combining
the two yields

) 2T 1 y
Asz’7 kAT A2

where the back-reaction of the gas to the motion of solids has
been included through A = p,/(p; + pp), and p, and p,, are the
mid-plane densities of gas and solids, respectively. We included
the A-dependence of u, as well for later purposes. In Eq. (2),
the size of the solids is defined through their Stokes number 75,
which is the ratio of their stopping time due to gas drag (fsop) to
the Kepler frequency as

Ts = tstopQK, (3)

u, is the radial velocity of the accreting disk gas, which in the

inner regions of a vertically uniform disk may be approximated
by

Uy ~ =3v/2r ~ =3ah}Qx /2r ~ —(3/2)ahg /) vk, )

2)

UVp = —

and 7 (1) is the deviation fraction of the gas orbital angular
velocity (Q) relative to the Keplerian angular velocity (Qk) that
is due to the radial pressure gradient in the disk,

_Q-Q _1(hg\’( dnP) 5
A dlnr
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Using Eq. (1), we then obtain the solid-to-gas ratio as
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Now, the parameter A may be estimated in the limit of a

vertically isothermal disk as

2/t _ 7l

Al=1+ =
Yo /hg hy

This thus leads to the following second-order equation in Z:

B -P)ZP —(A+1-2BZ+ (1 +1HE =0,

and £ is the ratio of the solid mass flux to the gas mass flux:

f = Mpeb/M*-
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Fig. 1. Steady-state solutions for the solid-to-gas mixing ratio Z as a
function of the Stokes number of solid particles 7, for different values
of the solid-to-dust-mass flux ratio & (as labeled), assuming a value of
the turbulent viscosity @ = 1073. The values of 7 corresponding to
expected pebble sizes are highlighted with larger symbols. The two so-
lutions provided by Eq. (13) are indicated by filled and open symbols,
respectively. The gray area highlights the region in which planetesimals
should form by a streaming instability (Carrera et al. 2015).
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Dust aggregate

Second, we expect dust grains to retain a memory of the ver-
tical scale height of the pebbles. Their vertical mixing timescale
can be estimated to be

tmix ~ (hg/€* Q' ~ 160a5' Tk ~ 160e3" (r/1au)** yr,  (16)

where £ ~ +/ahg is the estimated vertical mean free path
and Tk is Kepler period. Comparing a sublimation timescale
with a migration timescale for pebbles, we can derive the
radial width for completion of the sublimation as Ar ~
1072(R/10 cm)'/?r (see also Ciesla & Cuzzi 2006). With Eq. (1),
the timescale for the pebble flux to establish Z R 1 in the
sublimation region is estimated as 7z ~ 27rrAng/Mpeb ~
(1/37r)(r/hg)2(Ar/r)ar‘lfgeleK ~ 103(R/100m)1/za;1§;eleK.
Although #z for R = 10cm is 10—100 times longer than 7y,
the effective R for sublimation would be much smaller and
would be much shorter for more realistic fluffy pebbles (e.g.,
Kataoka et al. 2013). We can thus assume that the dust seeds
released by the sublimating pebbles have the same vertical thick-
ness as the pebbles themselves. This is done in Eq. (13) by re-
placing B by the value set by the pebble subdisk B8 — By ~
I+ Ts,peb/a)llz-
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Fig. 2. Steady-state solutions for the solid-to-gas mixing ratio Z as a
function of the solid-to-gas-mass flux ratio & for different values of the
Stokes number of solid particles 7, (from 10~ to 1072, as labeled), as-
suming two values of the turbulent viscosity @ = 107 (in blue) and
@ = 1072 (in red). Equation (13) is numerically solved. In contrast to
Fig. 1, we now consider that initially icy pebbles with 7,5, ~ 0.1 and
containing a mass fraction {;, = 1/3 in dust sublimate inside of the
snow line. The thicker lines corresponds to the preferred value for the
dust particles, 7, = 107,
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either by the growth timescale of pebbles
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Fig. 3. Time evolution of a) radius of the pebble formation front, b) peb-
ble accretion rate (Mpep), and €) Epe = Mpen/ M. for two values of a,
10~* (red) and 1073 (blue). The lines labeled “grow” (dotted) and “GI”
(dashed) represent the pebble growth and disk GI limits, respectively.
The thick solid lines express the actual values obtained by the minima
of the two limits. Here we assumed 7,5, = 0.1 and Z; = 0.01. In
panel c¢), the small squares represent the points with &pey, > &erit, €€
Eq. (18).
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The pebble formation front is defined
either by the growth timescale of pebbles

4 1 o [ Toeh \3/2
N 210ZMm 1/2(i) :
V3r ZoQ 2%0 \Tau) ¥

tgrow ~ 10 X

Or by the location at which the disk is
gravitationally unstable in the gas

O(rai/hy)® = 3a(M./M)Q.

1

Formation of dust-rich planetesimals
directly by gravitational instability

Eq. (18).
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Conclusions

Planetesimal formation by streaming instability is difficult

® dust-to-gas ratio is low due to the fast migration of pebbles

® one possibility would be to include pressure bumps

Including the back reaction of the solids on the gas yields an instability for small particles and high
pebble fluxes

® the instability can occur when the pebble to gas mass flux ratio exceeds 0.1(c/104)!2

The snow line (or any condensation line) is a special location to help planetesimal formation
® |ce sublimation transforms pebbles into small (dust-rich) grains

® When the dust to gas ratio exceeds unity, planetesimals form by direct gravitational instability

These planetesimals are dust-rich
® How do solar abundances relate to the ice-to-rock ratio in the solar system?

® What about that Ice-to-rock ratio in exoplanets?



