Atmospheric data assimilation using the LMD Mars GCM with an ensemble Kalman Filter

T. Navarro (1), E. Millour (1), F. Forget (1), S. Greybush (2), T. Miyoshi (2,3) and E. Kalnay (2)

Corresponding author: navarro@lmd.jussieu.fr
(1) Laboratoire de Météorologie Dynamique, Paris, France (2) Dpt. of Atmospheric and Oceanic Science, University of Maryland, USA
(3) Riken Advance Institute for Computational Science, Japan

Data Assimilation

Data assimilation is a technology widely used in geosciences, especially meteorology and weather forecast. It enables to optimally reconstruct a best estimate of the atmospheric state by combining various instrumental observations and theoretical information provided by a model. In Earth atmosphere science, it is systematically used to provide climatology derived from space-based observations.

The purpose of this work is to develop a data assimilation chain by coupling the Laboratoire de Météorologie Dynamique (LMD) Mars GCM with the Local Ensemble Transform Kalman Filter (LETKF) (1) assimilation framework of the University of Maryland.

LETKF is an ensemble-based method that propagates covariance thanks to the forecast model (i.e. the GCM). Therefore, it does not need the development of an adjoint model, as opposed to variational methods.

\[ x = \text{state variable vector} \]
\[ P = \text{covariance matrix} \]
\[ y^o = \text{vector of observations} \]

\[ x_n^{b(1)} = M_n x_n^{o(i)} \]

Forecast step

\[ H \] observational operator
\[ M \] forward model
\[ R \] error covariance matrix of observations

\[ \mathbf{P}^o = \frac{1}{N-1} \sum_{i=1}^{N} (x_n^{b(i)} - x_n^{b(1)}) (x_n^{b(i)} - x_n^{b(1)})^T \]

\[ \mathbf{P}^f = \frac{1}{N-1} \sum_{i=1}^{N} (x_n^{o(i)} - x_n^{b(i)}) (x_n^{o(i)} - x_n^{b(i)})^T \]

Analysis step - mean state

\[ \mathbf{x} = \mathbf{x}_n^{b} + \mathbf{P}_n^{b} \mathbf{H}_n^{b} (\mathbf{y}_n^{o} - \mathbf{H}_n^{b} \mathbf{x}_n^{b}) \]

Covariance estimation

\[ \mathbf{P}^o \]
\[ \mathbf{P}^f \]

Analysis step - covariance

\[ \mathbf{P}^n = \left( \mathbf{P}_n^{b} + \mathbf{H}_n^{b} \mathbf{R}_n^{b} \mathbf{H}_n^{b T} \right)^{-1} \]

\[ \mathbf{P}_n^{b} = \left( \mathbf{P}_n^{o} + \mathbf{H}_n^{b} \mathbf{R}_n^{b} \mathbf{H}_n^{b T} \right)^{-1} \]

Global Climate Model

The forward model used is the Mars General Circulation Model (GCM) developed at Laboratoire de Météorologie Dynamique (LMD) [6]. It includes:

- Subgrid scale convection using a thermal plume model [7]
- Radiative effects of airborne dust and water ice clouds [8,9]
- Semi-interactive airborne dust, guided by dust scenarios for 7 Martian Years [9]
- Microphysics of water ice clouds [10]
- An extension to the thermosphere up to 600 km [12]

Data assimilation chain

![Data Assimilation Diagram](image)

References

1. [Navarro T. et al. (2006)](#) Demonstration of ensemble data assimilation for Mars using DART, MarsWRF and radiance observations from MGS TES
2. [Lewis S. R. and Read P. L. (2001)](#) Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model
3. [Madeleine J.-B. et al. (2009)](#) The influence of radiatively active water ice clouds on the Martian climate
4. [Lee C. et al. (2010)](#) Microphysics of water ice clouds
5. [Navarro T. et al. (2007)](#) The forward model used is the Mars General Circulation Model (GCM) developed at LMD
7. [Gonzalez-Galindo F. et al. (2012)](#) Backtrack trace gases

Illustrative example

This is an illustration of atmospheric data assimilation, similar to the study of [3]. We use observations of locations from instrument MCS during month 9 (Ls=240°–270°) for MY 29 and temperatures generated from the model itself with an additive noise. This is only a classic study case to show the correct utilization of the data assimilation chain and not an innovative work in comparisons to other Martian data assimilation systems [2,3,4,5].

![Illustrative Diagram](image)

Backtrack trace gases

One main objective of the ExoMars Trace Gas Orbiter (TGO) is to detect the presence and origin of trace gas in the Martian atmosphere. Data assimilation with observations from the Atmospheric Chemistry Suite (ACS) on board TGO can reconstruct 4D meteorological fields and in particular winds, that are not observed by instruments) to backtrack trace gases and locate their sources. It can also provide “real-time” atmospheric properties for retrieval by other TGO instruments.

Climatological Reanalysis

The reconstruction of atmospheric fields is per se a strong motivation. It provides a best estimate of the known atmosphere and could be seen as a useful tool for atmospheric science community.

We will assimilate and combine vertical profiles of temperature from Planetary Fourier Sporctrometer on board ESA Mars Express and temperature, dust and water ice from Mars Climate Sounder on board NASA Mars Reconnaissance Orbiter.

By doing so, we can take advantage of both Mars Express regular, eccentric orbit with a strong dispersion in local time and systematic mapping of Mars Reconnaissance Orbiter in a synchronous orbit.

Mission support

In the future, an operational data assimilation chain would help to characterize the local conditions for Entry, Descent & Landing of probes and daily operations of landers and rovers on the Martian ground.

Improve atmospheric model

Data assimilation can point out disagreements between model and observations. As an optimization problem, it is a very powerful tool to estimate GCM parameters or characterize instrumental errors.

For instance, a lot of assumptions are made in the modeling of airborne dust and water-ice clouds. We could bring a new level of assessment to the GCM and refine values of model parameters.

Top left: Surface pressure at Longitude 0° and Latitude 70°N from an assimilation run, a free run without assimilation, and the reference trace from which temperature data were generated. The amplitude of the phase and the strong chaotic behavior seen are well-reconstruc ted.

Top right: Ensemble spread of the assimilation run (shaded), and root mean square error with the reference truth (solid) of temperature for both background and radiative atmospheric fields. The horizontal line is for the observation error of 30 K. The ensemble spread is well captured by the assimilation run, and the root mean square error is reduced significantly.

Bottom left: Zonal and time average of temperature ensemble spread (contoured) and RMSE with truth reference run (shaded) for an ensemble of 20 members freely evolving. Similarities with previous plot are an illustration of the ergodicity of the system.

Bottom middle: Backtrack trace gases and locate their sources. It can also provide “real-time” atmospheric properties for retrieval by other TGO instruments.

Bottom right: As previous, but for the analysis of an assimilation. The stronger the time variance of the system, the stronger the mean square error and ensemble spread.