Radioastronomy in Space with Cubesats

Baptiste Cecconi⁽¹⁾, Philippe Zarka⁽¹⁾, Marc Klein-Wolt⁽²⁾, Albert-Jan Boonstra⁽³⁾, Jan Bergman⁽⁴⁾, Boris Segret⁽¹⁾

(1) LESIA, CNRS-Observatoire de Paris, France
 (2) Radboud University, Nijmegen, The Netherlands
 (3) ASTRON, Dwingeloo, The Netherlands
 (3) IRFU, Uppsala, Sweden

No place on/near Earth is Dark at Low Frequencies (LF radio "smog")

Ionospheric cutoff at ~10 MHz:

Kaguya-Selene LRS Occultations of Earth RFI and AKR (22-Nov-2007)

RAE-2 occultation of Earth (1973)

Natural radio environment around Earth

Space borne Radio Astronomy Goniopolarimetry

- Space based radio antennas: simple dipoles or monopoles with length L of a few meters (impossible to have a reflector large enough to have λ /D << 1)
- Short antenna range (L $<< \lambda$): monopole antenna + S/C body ~ effective dipole
- Antenna gain ~ $L^2 \sin^2 \theta$ → null // antenna, max \perp to antenna
 - => local measurement of the wave-front orientation: direction of arrival + polarization + flux (+ wave front curvature)

Very Low Frequency Radioastronomy Identified Science opportunities

- LF sky mapping + monitoring : radio galaxies, large scale structures (clusters with radio halos, cosmological filaments, ...), including polarization, down to a few MHz
- **Cosmology**: pathfinder measurements of the red-shifted HI line that originates from before the formation of the first stars (dark ages, recombination)

- Interaction of ultra-high energy cosmic rays and neutrinos with the lunar surface
- Low-frequency radio bursts from the Sun, from 1.5 Rs to ~1 AU : Type II & III, CME, ...
 - **Space weather** Passive: through scintillation and Faraday rotation
 - Active: through radar scattering
- Auroral emissions from the giant planets' magnetospheres in our solar system: rotation periods, modulations by satellites & SW, MS dynamics, seasonal effects, ...
 First opportunity in decades to study Uranus and Neptune
- Detection of pulsars down to VLF, with implications for interstellar radio propagation: LF cutoff of temporal broadening in 1/f4.4?
 - → largest scale of turbulence in ISS ? limit of transient observations ?
- The unknown ...

What can we do further in terms of instrumentation?

• Current space-borne radio instrumentation:

set electric dipoles on a spacecraft + goniopolarimetry

- => only up to 9 instantaneous measurements
- => simple radio source modeling required

Future = Interferometry in space

electric dipoles on a series of spacecraft spread over a large range

=> Interferometry : angular resolution up to λ/B with B the longest baseline

Frequency	Wavelength	θ @ 10 km	θ @ 100 km	θ @ 1000 km	θ @ 10,000 km
30 MHz	10 m	3.4'	20.63"	2.06"	0.2"
10 MHz	30 m	10.31'	1'	6.19"	0.62"
1 MHz	300 m	1.719°	10.31'	1'	6.19"
100 kHz	3000 m	17.19°	1.719°	10.31′	1′

Knapp et al. 2012

- => Radio Wavefront can be spatially sampled
- => Instantaneous Imaging capabilities!

Solar Radio Emissions

• What do we see now:

using simple a model for extended source (on left figure, each «bubble» is a frequency step)

Each record: 1 location and 1 radius

• What to expect:

each record = 1 image (= flux map)

Will we see

or

Planetary Radio Emissions

• What do we see now:

for each time-frequency step: 1 location, 1 flux, 1 polarization (a posteriori reconstruction with a lot a records, i.e., time/freq averaging)

• What to expect:

each time-frequency:

- 1 flux map,
- 1 polarization map

Past and present projects

- Low Frequency radio interferometer has already been proposed several times, here in the USA:
 - SIRA project (MacDowall et al, GSFC)
 - SOLARA/SARA project (Knapp et al, MIT)
- in Europe, with the LOFAR team:
 - OLFAR project (Bentum et al., NL)
 - + other emerging projects in NL, Sweden and France (DEX, SURO, DARIS, FOAM...)
- **ESA-CAS** proposal:
 - DSL: Discover the Sky at Long wavelengths (Astron NL + SHAO China, et al)

OLFAR Teams involved: NL, FR, SE + many other interested

- OLFAR: Orbiting low Frequency Antennas for Radio Astronomy
- Science objectives:
 - «Dark Ages» (cosmology < 10MHz, redshift ~100, EoR [Epoch of Recombination])
 - Sun-Earth (space weather), Planets (outer planets: Uranus...)
 - In situ measurements (Thermal Noise).

• Technology objectives:

- Passive formation flying (swarm configuration); inter-satellite distance < 100 km
- Inter-satellite communication with GSM, shared computing power (distributed computing)
- Radio antennas: 3 electric dipoles axes (6 x 5 m); frequency range: 30 kHz-30 MHz
- **Schedule**: 2020 ?

Orbitography: lunar orbit (or L4-L5 Earth

Lagrange Points)

Past and present projects including cubesats

	freq. range	baseline	nb of S/C	location
SIRA	30 kHz – 15 MHz	>10 km	12 – 16	Sun-Earth L1 halo
SOLARA/ SARA	100 kHz – 10 MHz	<10,000 km	20	Earth-Moon L1
OLFAR*	30 kHz – 30 MHz	~100 km	50	Lunar orbit or Sun-Earth L4-L5
DSL	1 MHz – 100 MHz	< 30 km	12	Sun-Earth L2

^{*}OLFAR = 50 nanosat "sensor nodes" with 3D radio sensors, including distributed computing power, beam formed downlink capabilities, ranging capabilities, inter-node communication, swarm configuration...

Add a few "computing nodes" with GPUs? (to be studied...)

Summary

- Current very low frequency radio astronomy (below 20 MHz) is very limited (although very successful for solar and planetary sciences).
- The future of Very Low Frequency Radio Astronomy is in space (probably around the moon).
- Various projects have been proposed in the last few years, with CubeSats formation flying swarms, with 10 to 50 nano-satellites.
- There is ongoing R&D for future radio instrumentation on cubesats (antennas, receivers, correlators...)

Final notes

- Specific need for radio astronomy: EMC clean platform !! (not easy to have no RFI lines in the observed frequency range 10 khz 100 MHz)
- Radio receiver based on STAR developments (e.g., on Circus) is designed for nanosats