

STATUS OF THE QB50

speaker: Jan Thoemel von Karman Institute, Belgium

Journees ESEP, 12 Decembre 2014, Universite P. & M. Curie

Overview - Project's Main Activities

QB50

- has invited 50+ international universities to join
- will send 50 double CubeSats into LEO in January 2016
- carry-out an unprecedented science campaign to probe the thermosphere with fragmented sensors on ~40 satellites
- demonstrate new technologies
- supports teams with
 - provision of Sensor Units and ADCS
 - guidance on satellite design
- carries out a test flight since June 2014

Overview II - Mission Architecture

QB50

- consists of:
 - space segment
 - ~40 satellites contributed by a world wide community for an atmospheric science campaign
 - ~10 additional In-Orbit Demonstration satellites
 - ground segment
 - combination of 50 amateur ground stations
 - central functions like Mission Display Centre, Central Node
 - launch segment
 - modular, versatile deployment system
 - launcher
- is realized by:
 - an EC funded consortium of 15 world wide partners
 - 50 CubeSat teams from all over the world
 - many collaborators

QB50 Science

- objectives:
 - technology science:
 - miniaturization of satellite technology
 - facilitating access to space
 - in-orbit demonstration of new space technology
 - fundamental science:
 - understand thermosphere and improve modeling
- dissemination: Annual European Cubesat Symposium
 - 14-16th October, 2014, Estavayer-le-Lac, Switzerland
 - ~8-11 Sept. 2015, Liege , Belgium

Focus: Thermosphere Science I, Activities

- Predict measurements using:
 - empirical models such as MSISE & IRI
 - first principles models such GITM
- compare predictions with available data:
 - from satellites CHAMP, TIMED
 - from ground based data EISCAT
- coordinate with science community science team:
 - von Karman Institute (VKI, B):
 - Mullard Space Science Laboratory (MSSL, UK):
 - Institute for Atmospheric Physics (IAP, D):
 - interested cubesat teams
- key requirement on science cubesats:
 - acquire and downlink 2Mbit/day during science phase

Focus: Thermosphere Science II, Results

Focus: Thermosphere Science III, Sensors

- sensing means: ~ 43 fragmented sensors
 - 19 AO, O2: FIPEX
 - 11 electron density: multi Needle Langmuir probes (MNLP)
 - 13 ion and neutral mass spectrometers (INMS)

FIPEX (TU-Dresden, D),

INMS (MSSL, UK),

Space Segment

- ~40 science satellites
 - QB50 Sensor Unit
 - CubeSat Payload
- ~10 In Orbit Demonstration satellites
 - InflateSail (Surrey Space Centre, UK)
 - Delta, Phi (TU-Delft, NL)
 - Qarman (VKI)

von Karman Institute

Ground Segment

QB50 Ground Segment

- consists of
 - 50 amateur ground stations
 - central functions such a Central server for TLE, Science Data, WOD storage;
 coordination with USSTRATCOM/NORAD etc
 - Radio Amateurs coordination
 - Mission Display Centre
- frequency coordination of
 - 50 UHF downlink and
 - 10 shared VHF uplink frequency done with help of AMSAT UK/FR/NL/BE

Ground Segment

Distribution of baseline ground station and coverage for 380 altitude

Launch Segment

 deployment system made of versatile QuadPack modules, designed and manufactured by ISIS B.V., NL

- launch will take place January 2016
- orbit:
 - ~380 km altitude
 - 98 deg inclination

Precursor De-risking Campaign - Rationale

- CubeSat missions are inherently more risky
- Is this acceptable for constellations like QB50?

Precursor Derisking Campaign

in less than 12 months:

- consortium and collaborators management
- subsystems definition, design, manufacturing:
 - INMS, FIPEX (MSSL, TU-Dresden)
 - ADCS (SSC)
 - thermal payload and cutting edge thermal analysis (VKI)
 - coms payloads (AMSAT)
- satellite design, assembly and management (ISIS)
- frequency allocation and space object registration

Precursor Derisking Campaign

- status december 2014:
 - satellites healthy
 - commissioning & trouble shooting ongoing
 - lessons learned: improvement of technology and documentation
 - achievement of
 - campaign objective "derisking"
 - project objective "deployment system design" already commercialized
 - data acquisition expected to start in January 2014

Acknowledgments

We are grateful for the motivation and support of many individuals from about 90 organizations!

Conferences

- 6th European CubeSat Symposium
 - Estavayer-le-Lac, Switzerland, 14-16th October
 - https://cubesatsymposium.eu/
 - in collaboration with Journal of Small Spacecraft (JOSS)
 - participation fee: 250 Eur
- 7th European Cube Symposium
 - 8-11 Sept. 2015, Liege, Belgium

Thank you for your interest.

Do you have any questions?

Jan Thoemel

jan.thoemel@vki.ac.be

